导师队伍

张庆华讲师
2025年11月10日 | 点击次数:

数学与统计学院研究生导师信息

一、电子照片

二、基本情况

姓名:张庆华

性别:男

学历学位:博士

职称:讲师

职务:无

学术兼职:

研究方向:量子关联、量子不确定关系等

电子邮箱:qhzhan[email protected]

三、专业教学及教学成果

主要承担《高等数学A》、《概率论与数理统计A》、《线性代数》课程教学;

四、研究方向及研究团队

主要从事量子不确定性关系、量子互补关系的刻画,量子纠缠、失谐、导引、非定域性的度量等量子理论研究;

五、科研成果

科研项目

1.湖南省教育厅优秀青年项目:几种基于算子矩的量子态纠缠判定方法,No. 24B02982024-122026-12,主持,在研;

2.湖南省自然科学基金青年项目C类:基于熵和斜信息的量子不确定性关系以及应用研究,No. 2025JJ60025 2025.01至2027.12,主持,在研;

论文:

  1.Zhang, Q.-H., & Fei, S.-M. (2020). A sufficient entanglement criterion based on quantum fisher information and variance. Laser Physics Letters, 17(6), 065202.

  2.Zhang, Q.-H., Wu, J.-F., & Fei, S.-M. (2021). A note on uncertainty relations of arbitrary N quantum channels. Laser Physics Letters, 18(9), 095204.

  3.Zhang, J.-B., Li, T., Zhang, Q.-H., Fei, S.-M., & Wang, Z.-X. (2021). Multipartite entanglement criterion via generalized local uncertainty relations. Scientific Reports, 11(1), 9640.

  4.Zhang, Q.-H., & Fei, S.-M. (2021). Tighter sum uncertainty relations via variance and Wigner-Yanase skew information for N incompatible observables. Quantum Information Processing, 20(12), 334.

  5.Ma, X., Zhang, Q.-H., & Fei, S.-M. (2022). Product and sum uncertainty relations based on metric-adjusted skew information. Laser Physics Letters, 19(5), 055205.

  6.Zhang, Q.-H., & Nechita, I. (2022). A fisher information-based incompatibility criterion for quantum channels. Entropy, 24(6), 805.

  7.Zhang, Q.-H., Wu, J.-F., Ma, X., & Fei, S.-M. (2023). A note on uncertainty relations of metric-adjusted skew information. Quantum Information Processing, 22(2) 115.

  8.Wu, J.-F., Zhang, Q.-H., & Fei, S.-M. (2023). Parameterized multi-observable sum uncertainty relations. The European Physical Journal Plus, 138(3), 1–8.

  9.Zhang, Q.-H., & Fei, S.-M. (2023). Entropic uncertainty relations with quantum memory in a multipartite scenario. Physical Review A, 108(1), 012211.

  10.Xu, C., Zhang, Q.-H., & Fei, S.-M. (2024). Summation and product forms of uncertainty relations based on metric-adjusted skew information. Quantum Information Processing, 23(7), 252

  11.Zhang, Q.-H., Wu, J.-F., & Fei, S.-M. (2023). A note on Wigner-Yanase skew information-based uncertainty of quantum channels. Quantum Information Processing, 22(12),456

  12.Xu, C., Zhou, W., Zhang, Q.-H., & Fei, S.-M. (2024). Uncertainty relations based on the ρ-absolute variance for quantum channels. Quantum Information Processing, 23(8), 283.

  13.Zhang, Q.-H., & Fei, S.-M. (2024). Coherence-mixedness trade-offs. Journal of Physics A: Mathematical and Theoretical, 57(23), 235301.

  14.Zhang, Q.-H., Lai, L., & Fei, S.-M. (2024). Parameterized steering criteria via correlation matrices. Results in Physics, 56, 107253.

  15.Xu, C., Zhang, Q.-H., & Fei, S.-M. (2024). Uncertainty of quantum channels based on symmetrized ρ-absolute variance and modified Wigner-Yanase skew information. Physica Scripta, 99(11), 115111.

  16、Zhang, Q.-H., & Fei, S.-M. (2024). Wigner–Yanase skew information-based uncertainty relations for quantum channels. The European Physical Journal Plus, 139(2), 1–6.

  17.Wu, J.-F., Zhang, Q.-H., & Fei, S.-M. (2025). Uncertainty of quantum channels via generalized Wigner–Yanase skew information. Quantum Information Processing, 24(2), 33.

  18.Zhang, Q.-H., Ma, X., & Fei, S.-M. (2025). Entanglement certification from moments of positive maps. Quantum Information Processing, 24(8), 1–7.

  19.Xu, C., Zhang, Q.-H., Li, T., & Fei, S.-M. (2025). Tightening the entropic uncertainty relations with quantum memory in a multipartite scenario. Physics Letters A, 130570.