数学与统计学院研究生导师信息
一、电子照片

二、基本情况
姓名:张庆华
性别:男
学历学位:博士
职称:讲师
职务:无
学术兼职:
研究方向:量子关联、量子不确定关系等
电子邮箱:qhzhan[email protected]
三、专业教学及教学成果
主要承担《高等数学A》、《概率论与数理统计A》、《线性代数》课程教学;
四、研究方向及研究团队
主要从事量子不确定性关系、量子互补关系的刻画,量子纠缠、失谐、导引、非定域性的度量等量子理论研究;
五、科研成果
科研项目
1.湖南省教育厅优秀青年项目:几种基于算子矩的量子态纠缠判定方法,No. 24B0298,2024-12至2026-12,主持,在研;
2.湖南省自然科学基金青年项目C类:基于熵和斜信息的量子不确定性关系以及应用研究,No. 2025JJ60025, 2025.01至2027.12,主持,在研;
论文:
1.Zhang, Q.-H., & Fei, S.-M. (2020). A sufficient entanglement criterion based on quantum fisher information and variance. Laser Physics Letters, 17(6), 065202.
2.Zhang, Q.-H., Wu, J.-F., & Fei, S.-M. (2021). A note on uncertainty relations of arbitrary N quantum channels. Laser Physics Letters, 18(9), 095204.
3.Zhang, J.-B., Li, T., Zhang, Q.-H., Fei, S.-M., & Wang, Z.-X. (2021). Multipartite entanglement criterion via generalized local uncertainty relations. Scientific Reports, 11(1), 9640.
4.Zhang, Q.-H., & Fei, S.-M. (2021). Tighter sum uncertainty relations via variance and Wigner-Yanase skew information for N incompatible observables. Quantum Information Processing, 20(12), 334.
5.Ma, X., Zhang, Q.-H., & Fei, S.-M. (2022). Product and sum uncertainty relations based on metric-adjusted skew information. Laser Physics Letters, 19(5), 055205.
6.Zhang, Q.-H., & Nechita, I. (2022). A fisher information-based incompatibility criterion for quantum channels. Entropy, 24(6), 805.
7.Zhang, Q.-H., Wu, J.-F., Ma, X., & Fei, S.-M. (2023). A note on uncertainty relations of metric-adjusted skew information. Quantum Information Processing, 22(2) 115.
8.Wu, J.-F., Zhang, Q.-H., & Fei, S.-M. (2023). Parameterized multi-observable sum uncertainty relations. The European Physical Journal Plus, 138(3), 1–8.
9.Zhang, Q.-H., & Fei, S.-M. (2023). Entropic uncertainty relations with quantum memory in a multipartite scenario. Physical Review A, 108(1), 012211.
10.Xu, C., Zhang, Q.-H., & Fei, S.-M. (2024). Summation and product forms of uncertainty relations based on metric-adjusted skew information. Quantum Information Processing, 23(7), 252
11.Zhang, Q.-H., Wu, J.-F., & Fei, S.-M. (2023). A note on Wigner-Yanase skew information-based uncertainty of quantum channels. Quantum Information Processing, 22(12),456
12.Xu, C., Zhou, W., Zhang, Q.-H., & Fei, S.-M. (2024). Uncertainty relations based on the ρ-absolute variance for quantum channels. Quantum Information Processing, 23(8), 283.
13.Zhang, Q.-H., & Fei, S.-M. (2024). Coherence-mixedness trade-offs. Journal of Physics A: Mathematical and Theoretical, 57(23), 235301.
14.Zhang, Q.-H., Lai, L., & Fei, S.-M. (2024). Parameterized steering criteria via correlation matrices. Results in Physics, 56, 107253.
15.Xu, C., Zhang, Q.-H., & Fei, S.-M. (2024). Uncertainty of quantum channels based on symmetrized ρ-absolute variance and modified Wigner-Yanase skew information. Physica Scripta, 99(11), 115111.
16、Zhang, Q.-H., & Fei, S.-M. (2024). Wigner–Yanase skew information-based uncertainty relations for quantum channels. The European Physical Journal Plus, 139(2), 1–6.
17.Wu, J.-F., Zhang, Q.-H., & Fei, S.-M. (2025). Uncertainty of quantum channels via generalized Wigner–Yanase skew information. Quantum Information Processing, 24(2), 33.
18.Zhang, Q.-H., Ma, X., & Fei, S.-M. (2025). Entanglement certification from moments of positive maps. Quantum Information Processing, 24(8), 1–7.
19.Xu, C., Zhang, Q.-H., Li, T., & Fei, S.-M. (2025). Tightening the entropic uncertainty relations with quantum memory in a multipartite scenario. Physics Letters A, 130570.