学术动态

何家维:Maximal-regularity for fractional problem driven by non-autonomous forms
2025年07月11日 | 点击次数:

报告承办单位:数学与统计学院

报告内容: In this talk, we investigate the maximal-regularity in Lions' problem involving a time-fractional derivative and a non-autonomous form on a Hilbert space. This problem concerns whether the maximal-regularity holds when)is merely continuous or even merely measurable. We construct a new representation formula for the solutions to obtain the maximal-regularity results, based on a more general Dini-type continuity condition acting on the coefficients. In particular, a counterexample shows the optimality of our condition, indicating the minimal Hlder-scale regularity required for positive results.

报告人姓名:何家维

报告人所在单位:广西大学

报告人职称/职务及学术头衔:副教授

报告时间: 2025年7月19日下午3:30-4:30

报告地点:云塘校区理科楼A-419

报告人简介:何家维,副教授,硕士生导师,现任职于广西大学数学与信息科学学院,主要从事微分方程与动力系统理论及其相关研究,先后在Proc.Roy.Soc.Edinburgh Sect.A、J.Comput.Appl.Math.、Fract.Calc.Appl.Anal.、Adv.Nonlinear Anal.、Bull.Sci.Math.等国内外权威期刊上发表学术论文多篇,主持国家自然科学基金项目1项,参与国家自然科学基金项目4项、广西科技厅项目3项。